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SIGNIFICANCE AND EXPLANATION

In this paper semilinear elliptic equations are considered: these are

L~iplacu eo-uations perturbed by a nonlinearity depending only on the solution u.

This type of problem arises in many situation (theory of nonlinear diffusion

,jenerated by nonlinear sources, theory of thermal ignition of gases, quantum field

theory, theory of gravitational equilibrium of stars, population genetics .... )

Since tihe solution r presents a temperature, or a concentration, or a density..

it is reasonable to restrict our attention to positive solutions of such equ~ations.

Here .%e consider all possible types of nonlinearities, and in each case we give

ta!riv% uptimal existence results. These results are also explained using bifurca-

ti ,n d-iaqram representing the sot of possible solutions.

A cression For-

ed l
f;i icnat i i

T, t r iri

; r, i i I i ftur the woiU mOi~ and views expressed in this descriptive summary
Iti':i; witi :.18(, ,ind iet~ wit~i th &nthnr of this report.



ON THE EXISTENCE OF POSITIVE SOLUTIONS

OF SEMILINEAR ELLIPTIC EQUATIONS

P. L. Lions

Introduction:

The goal of this paper is to give a survey concerning the problem of the existence of

positive solutions for semilinear elliptic problems: that is, we consider the following

problem

2-
(-Au = f(u) in 0, u E C2(?)

u > 0 in 2, u = 0 on 3Q

where Q is a bounded regular domain in IR
N 
, and f(t) is some given nonlinearity.

We study all the possible behaviors of f and prove - or recall when these results are

known - not only the eventual existence of a solution of (0.1) but we also give multiplicity

.esults. In many case, we consider parametrized versions of (0.1) (take Xf(u) instead of

f(u) in (0.1),, and we give "bifurcation diagrams" for the set of solutions of (0.1).

Such problems arise in a variety of situations - in the theory of nonlinear diffusion

generated by nonlinear sources, in the theory of thermal ignition of gases, (see

D. D. Joseph and T. S. Lundgren [36], I. M. Gelfand [31]), in quantum field theory and in

mechanical statistics (see W. Strauss [55], Coleman, Glazer and A. Martin [231, H. Perestycki

and P. L. Lions [7]), in the theory of gravitational equilibrium of stars (see D. D. Joseph

and T. S. Lundgren 1361, P. L. Lions [42]).

Our main tools for proving existence and multiplicity results are topoloqical decree

arguments (we shall also use variational techniques due to A. Ambrosetti and P. H. Rabinowitz

14] , P. H. Rabinowitz [52]) ; we also refer to H. Amann ill , [2] for multiplicity results which

are useful in the context of (0.1).

Of course the existence of a solution (or of multiple solutions) depends siqnificantl,

on the assumptions made on f: we will first distinquish between two cases, the case wltun

f() and the case when f (0) = o.
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In addition in these two cases we have to consider different possibilities whether f

is superlinear or sublinear at +-.

The plan is as follows:

I. The case when f(O) = 0:

I1: Superlinear nonlinearities

1.2: Sublinear nonlinearities

II. The case when f(0) > 0:

II1.: Superlinear nonlinearities

11 2: Sublinear nonlinearities

III. The shape of the nonlinearity

111.1: Buckles and multiplicity results

111.2: Bumps and the shape of the nonlinearity

IV. Variants and open questions:

I-.1: Unbounded domains

!V.2: Open questions

WQu would like to point out that all the results which follow can be extended to more

:.nrra seconl-order elliptice operators than -A and that nonlinearities which depend on

X(t(xu)) may be treated as well, together with different boundary conditions.

Final.y in this paper we do not consider the question of asymptotically linear functions

even if some of the techniques described below give results.

-2-



I. The case when f(O) = 0

I.1 Superlinear nonlinearities:

In all that follows, we will assume that f is locally Lipschitz continuous from IR

into IR and in this section we assume f(O) = 0. By superlinearity, we mean the following

condition:

11) lira f(t)t - I  
X11

t--+1

where is the first eigenvalue of (-A) with Dirichlet boundary conditions.

Our first existence result is due to D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum

129], [30] :

Theorem 1.1: Let us -,-m. that we have in addition to (1)

(2) lim f(t)t
-  

<
t-O

+

(3) li f(t)U = with Z= - if N > 3, if N = 1,2
___ N-2 -t "+-

and eith-2r

(4 = 1 2 uch that if is closed and there exists a > 0 such that at all

eoints of ail the sectional curvatures of 3', are bounded below by an_d

Ntiere exist- x ,R 1uch that (x-x0,n(x)) < 0, fo: X r (where n W is the
0 2 ___ ___

unit outward normal vector to ' at x)

N+2(c,) 17(t)t pj;_eenin-r easvgf o_ t .0 U = -N-2' if N > 3; iff N = 1,2 this condition

s nut ne(essE.arv).

Then, unde th-i : ascim tions, there exists a soiution u of

( - u f(u) in 2, u f C()

t• 0 n u = u 0 on 37

Pomark .L: A- : t tioi (.1) and) ( 3) wiLl b, jtifieJ below; w,, helieve that (4) or (5) are

S " - iit tv f It i N - 1, We do not need (W) or (5) , and if N = I

() is; ri., i ,'d, 1, jr. if r; ' ) ma. hi rf'1a 'iO ,



(3') 1im ft)e
-
t 0, for some a < 2

Remark 1.2: There are other general existence results: we refer for example to A. Ambrosetti

and P. H. Rabinowitz [4], H. Brezis and R. E. L. Turner [191.

In [4], it is assumed (1) - (3) (actually stronger forms of (1), (2) are used) and

(6) "9 (01), 3t 1 0 such that Otf(t) - F(t) > 0, for t > t o where
'2 0
t

F(t) = J f(s)ds.

0

In [191, it is assume (1), (2) and

- o N+l
(7) lim f(t)t = 0, with = - (N > 2)

Compared to these results Theorem I.1 appears to be the most general but the proof (see (30])

uses the symmetries of A and it is not clear to extend it to more general elliptic operators.

On the other hand, the method used in [4] is valid for gener-al equations of the type (0.1)

but with a variational structure. Finally, even if [19] appears to be the weakest result, it

extends to general equations of the type (0.1) even without a variational structure.

We now comment on assumptions (2) and (3): first, the fact that L is, in general,
N-2

the best exponent is well-known (see, for example, S. I. Pohozaev (51], D. D. Joseph and

T. S. Lundgren [361). Of course we cannot say it is necessary since if u is a solution of

(0.1) for some f, we may change f(t) as we want for t > iJull _ and u will remain a
L

solution of (0.1). (More interesting examples may be found in p. H. Rabinowitz t53],

H. Brezis and L. Nirenberg [18], J. Hempel [35]).

Now concerning (2) we just remark that if f(t) Xt + g(t) with X > 11 q(t) 1 0

for t 0 0, then (0.1) has no solution: indeed let vI be a positive eigen-function

associated to that is

2-
-Av X vl in Q, vI E C (Q), vI > 0 in , v= 0 on 30

-4-



Then, we multiply (0.1) by v, and we obtain after twu inteqratiois by parts:

k f uvI dx = k f uv1 dx *',(I)v I x I dx

and this contradicts . A,

Nevertheless, something can be said whet (2) is 0t ,at I:,f.d ( ee Theorem 11.2 below).

We will need some assumptions which insuo-, t*-t t!i, ., 1.ti,,ns of (0.1) ar,, a priori

bounded in I (2): we will use the results of ... h iuiredo, P. L. Lions and

R. D. Nussbaum [30].

Theorem 1.2: Let us assume that . is convex aio tha t f at isfies (3) and

-l
(i') lir' f(t)t - +

t .+-

(7) i- tf(t)-OF(t) 0, for N2 (i N 3)lim 0,fo
t2f(t) 2/N N-2 -

(8) f is differentiable near i and f' (1)) - 1

(9) f(t) > 0, for all t 0

Let X be the supremum of all A :- 0 such that there exists a solution of (9.1 - A)

2 -
(0.1 - A) -Au = Af(u) in , u C(), u> 0 in , u = 0 on

i) Then +> A , A, and for 0 < A < A , there exists at least one solution of

(0.1 - A).

ii) -If k A1, then for A'I A < A , there exist at least two solutions uI u, of

(0.1 - A) which are ordered that is: u1 < u2  on 0. In addition, there exists at least

one solution of (0.1 - A*).

We will give below some conditions which insure that A A

Remark 1.3: The convexity of the domain and the assumption (7) are just technical as.umptions

which imply a priori bounds of the solutions of (0.1 - X) in view of the results of I0]).

of course the theorem still holds under other assoImptions which imply a priori [oLnds, as in

J I)] or in Ji). The theorem is still true without the assumption (9) but if ( )) is nlot

satisfied, f falls into a class of nonlinearities which will be inv'titat.d lat'r on.



Before going into the proof of Theorem 1.2, we give a condition which implies •

Corolldry i.I: Under the assumptions of Theorem 1.2 and if f(t) - t. 0 for t I), t mal,

then A N

Proof of Corollary 1.1:

In view of Crandall-Rabinowitz result on bifurcation from a simple eiqenvalue (s:e e25]

there exists a connected component C in (A,u) emanatinq from (N ,0). Let t 1 •i

s uch that

f(t) < t for t ( (0,t

We thus have solutions of (0.1 - X) for X - small and with u t . Now, if

I C(K

(Xu) - C, we would have

-Au = 
Xf(u) U i 2, u - 0 in Xu=0 on 32

This is not possible since is the first eigenvalue. This contradiction proves that

,

Remirk 1.4: If f(t) t, for t small, t > 0; then locally nuar (.Ni,n) the only

Po,;c bl, coLutiotis (2 ,u) of (W. I - are for

Priof if Theorem 1.2: Let us first remark that in vitw of assumptions; (1) , 7) we know that

fir a!.l t,B -- C there exists C C) such that, if (tu) is a solution of (.1 -

with B., the n lul _c('w)-

4n ,dditloo in vo.w of Theorem 1.1, we jusit need to Irove that if " , then fer

tl2r. -*xsl't at least two srltlotioZI , u of (. - . To this 112 ,

V , ) L s1 lch that there exists a Solttion u of (0 . 1 -" )

1, t s r. e that for ) ), there exist two ord,.red solutionls of ('.I -

ir -r' :,til t-1 u-: A topoli0qical 3ooree argument (see J. Leray aid !.A .chauder 141) or

i,. hir,'nbrq [4'JI for the definition and basic roipertiecc of thi olooical dearee). We

fir ;t hf:n: I compact mal. associatd with the }lohcm (0.1 - \) fiti C I ) we

-, - c - .' th,' solution of

.. .. . . . . . . . . . .

- ,



-Av = Xf(u) in Q2, v C W 2p(Q) (p < ), v = 0 on %Q2

where we take f(t) = 0 if t < 0. Let C > 0 be such that all solutions of (0.1 - A)

(that is all nonzero fixed points of K ) are bounded by C and such that Iull < C.

Since f is locally Lipschitz, there exists W such that

Xf(t) + pt is nondecreasing for t c [0,C]

Finally we set: v = Ku is the solution of

-Av + Pv = lf(u) + 1u in Q, V E W 2 (1)(p < -), v = 0 on 11

Let us now define some open sets in C1 (1 )
0

1 - Du av

u I)(<, lU C, u , FoV 1  in L,-u 1 on V )- "" -In 0 -no
C (2

where n denotes the outward unit normal, and where v, as in Corollary 1.1 is a positive

eigenfunction associated with X. The constant co will be determined later on (we already

impose 20 to bu Small enouqh such that u 13, and such that Af(rov1 ) > Al 0Vl in 12).

- I u l u .
We also set: U - B, u , u in )I n - -non

We are ooinq to prove that the topological degree of I - K is well defined on B and

on 0 (with resp.ect to o)) and that its values are:

d(I-K, B, 0) 0, d(I-K, 0, 0) = +1

This will imply: d(I-K, B-0, 0) = -1, therefore there exists u2 solution of (0.1 - X)

and 1i1 - o-C. In particular ii A u is not a solution of (0.1 X) and a straightforward
2 u

comp utatliih shows; that, actually, u2 A u satisfies:

-A(u 2  A u) -_ f(u2 '% u) in D'( ), u2 A u , W0  (2)

To conclude,, that is to prove the existence of u , we just have to notice that for c small

enough, LvI (with the ame notations as in Corollary 1 .1) is a subsolution of (). 1 - X)

anid V 1  2 A% u. And thus there exis;ts a solution u of (0.1 - ) satisfying:

I ' u2 A u in -
1 -7

-7-



Now, we prove the claims on the topological degree. Indeed, in view of [30], let us

first remark that one may choose C such that, if K denotes the following compacte

operator: K u = v defined by
6

-v + 8v = 
8(Xf(u) + ju) + (1-6)(vu + 1)

v e w2 'p (0)(p < ), v = 0 on 2n

where v > Al, then all fixed points of K (for 0 40 < 1) are bounded in C (S) norm

by C. In addition an easy argument shows that one may choose c0 small enough such that

all fixed points u of K (for 0 4 0 1) (distinct from 0 if e = 1) satisfy:

u ) 0vi 
. 

This is due to the fact that both A and v are greater than A . Therefore

d(I-K@, B, 0) is well defined and independent of 8 e (0,1]. But it is easy to see that

K, cannot have any fixed point because of the choice of v and thus

d(I-K, B, 0) = d(I-K 0 , B, 0) = 0

Next, we prove that d(I-K, 0, 0) = 1. Indeed, let us choose P in 0, and let us

remark that we may choose C such that K maps 4 into 0. Remark that if u e 7 and

if v = Ku, we have

-Av + iv= Xf(u) + Pju 4 Xf(u) + IJU

and by the strono maximum principle we conclude: v e 0. Therefore

i(I - (OK + ( 0-, (, 0) is well defined and is independent of 0 e [0,1)1. In

particular:

d(I-K, 0, 0) = d(I-p, 0, 0) = 1, since (2

In order to comolete the oroof of Theorem 1.2, the last thing we have to check is that

X < +w. And this is an easy consequence of (W') and (9): Indeed these assumptions imply

that there exists a > n such that f(t) > at for all t > 0. Now multiplyinq

(n.1 - ) y v, and integrating by parts, this yields

N UV1 x = r lf(i V 1  x ) -tX 1V '1 x

-5-



A!

and therefore X < Al anji thus A* <
a

Remark 1.5: In the case where we have

lim f(t)t
-

t +

and under the same assumptions as in Theorem 1.2 (except (8) of course), then, by a similar

proof to the preceeding one, there exists A < such that for 0 < A < A , there exist

at least two solutions u1 , u2 of (0.1 - A) which are ordered that is: u1 < u2  in t

and for A = A , there exists at least one solution of (0.1 - A ). This is the case for

0~N +2
example, when f(t) = (t + tP)(t > 0) with. 0 < 0 < 1, 1 < p < (if N > 2).

Remark 1.5: We conjecture that Theorems I.1 and 1.2 are not optimal in the sense that for

example in Theorem I.1, assumptions (4) or (5) should not be needed, or Theorem 1.2 should

be true just under assumptions (1') - (3) - (8) and (9). These extensions depend only on

extensions of results implying a priori bounds ior solutions of (0.1) or (0.1 - X) (see

also section IV.2 below).

Remark 1.6: To summarize the results of this section, we are going to give a few

"bifurcation diagrams". Let us emphasize that these diagrams are formal and in some sense

are "minimal" diagrams: we will see in section III below that the set of solutions may be

a lot more complicated. The curves below represent the maximum norm of u as a function

of A, whenever (u,A) is a solution of (0.1 - X). In all these diagrams we assume at

least that f is superlinear (and satisfies (1')) and f satisfies (3), (9) (and other

precise assumption can be found in Theorem 1.1 and 1.2).

Case 1: f'(0) = 0 N12)

Ex: f(t) = tP(1 < p < N-2- N -2



Case 2: f(0) = 1, f(t) > t for t > 0, t small

Ex: f(t) = t + tP(1 < p < -)
N-2

A1  A-

Case 3: f'(0) = 1, f(t) < t for t > 0, t small
__+2) hULu K

Ex: f(t) = t(1 -sin t) + tP(1 < p N<+2
N-2

Case 4: lim f(t)t
- 

=

t+0 ih
+

Ex:_ f(t) = /+ t(1 p N+2

1.2. Sublinear nonlinearities.

In this section we still assume that f is locally Lipschitz continuous from R

into R and that f(0) = 0. In addition f will be assumed to be sublinear that is

(10) lim, f(t)t
- 

<
t++-

Our first existence result is well-known (see for example H. Amann [1], [2) or

H. Berestycki and P. L. Lions [81) and thus we will skip its proof:

Theorem 1.3: Let us assume, in addition to (10), that f satisfies:

{11)lira f(t)t
-

1 >-1

+

Then there exists a maximum positive solution of (0.1).

-10-



Remark 1.8: Of course, if f satisfies (11) and

(12) f(s) = 0, for some B > 0

then the conclusion of Theorem 1.3 holds, where maximum solution is replaced by maximum

solution among all solutions less than S. Indeed by the maximum principle a solution of

(0.1) with f replaced by ?(t) - f(t A 8) is a solution of (0.1) which is less than B

and let us remark that F now satisfies (10).

Remark 1.9: In the case where f(t) satifies (10, (11) and

(13) f(t)t
-1  

is strictly decreasing for t > 0

then it is well-known (see H. Berestycki (6] for an elegant proof) that (0.1) has a unique

positive solution. In particular (13) is satisfied if f is strictly concave.

We now turn to the parametrized version of (0.1), namely (0.1 - A).

Theorem 1.4: We assume that f satisfies:

(10') lim f(t)t
- 

= 0 (resp. f(B) - 0 for some 8 > 0)

(8) f is differentiable near 0 and f'(0) n 1

(9) f(t) > 0, for all t > 0 (resp. for all B > t > 0)

Let A be the infinum of all A > 0 such that there exists a solution of (0.1 - A)

(resp. less than 6). Then we have

i) 0 < ,( and for A < A, there exists a maximum positive solution u1  of

(0.1 - X) (resp. maximum among all positive solutions of (0.1 - A) less than B).

ii) If A < Al, then for A < A < Al, there exists a second solution u2 of

(0.1 - A) which thus satisfies: 0 < u2 < u1  in 'I. In addition, there exists a maximum

positive solution of (0.1 - A ).

Let us give immediately some condition which implies A < A

Corollary 1.2: Under the assumptions of Theorem 1.4 and if we have

f(t) > t for t > 0, t small

then A < X

-11-



Remark 1.10: If f(t) < t, for t small, t > 0; then locally near (A1 ,0) the only

possible solutions (X,u) of (0.1 - X) are for A > XI"

Since the proofs of Theorem 1.4 and Corollary 1.2 are somewhat similar to those of

Theorem 1.2 and Corollary 1.1, we will skip them.

We want now to discuss the case where (8) is replaced by

(8') lim f(t)t
- 

( 0 
t+ 0t +

Theorme 1.5: We assume that f satisfies (8') and

(14) a = inf(t > 0, f(t) > 0) exists and a ) 0

(15) lim f(t)t
- 

= 0 (resp. f(6) 
= 

0 for some B > a)
t

+
4- t

a > 0 (resp. S > ; > 0), F( ) > 0, where F(t) = f f(s)ds.
0

Let X be the infimum of all A > 0 such that there exists a solution of (0.1 - X)

(resp. less than 6). Then A is finite and positive and we have, if a is star shaped

*

i) For X ) A , there exists a maximum positive solution u1  of (0.1 - A) (resp.

maximum among all psotive solutions of (0.1 - X) less than B).

ii) For X > A , there exists a second solution u2 of (0.1 - A) which satisfies:

0 < u2 < ul in Q.

If i is not star shaped, i) is true for X large enough and ii) is replaced by

iii) If there exists a solution of (0.1 - A), then there exists a maximum positive

solution u1  of (0.1 - A) (resp. maximum among all positive solutions of (0.1 - A) less

than a) and there exists a second solution u2 of (0.1 - ).

We do not know if the assumption on Q is necessary.

Remark 1.11: This result is essentially contained in H. Berestycki and P. L. Lions [8)

(see also P. H. Rabinowitz [52]). Remark that the fact that A is finite (i.e. there

exist solutions for A large) is easily obtained, for example, by a variational

argument. Indeed (replacing if necessary f by f(t) = f(t A 5)) if we consider the

minimization problem:

-12-



S min f 1_ IVu1
2 

- XA(u)dx, where F(t) - t f(s)ds
1 0 2 0

uLMH 0(2)

then this problem has always a solution ul and for A large enough u1 > 0 in Q,

since I < 0. We will see below that in general u 1 and u, do not coincide for

X

2 3
Remark 1.12: In a very special case (0 = (0,1], f(t) = -Ut + vt - t with v > 0 and

2 *
v > 4U > 0) it is proved in Conley and Smoller [24) that for X > X there are exactly

two solutions (ul,U 2 ) of (0.1 - X) while for X = X there is a unique solution ul

of (0.1 - X ) (in addition a precise description of the stability of these solutions is

given). Remark that (8'), (14), (15) are satisfied in this case (with

1 2a = (v - 4LO, 6 = - (v + V- 4). This shows that Theorem 1.5 is optimal in
2 2

this case.

We claim that this example shows that IA > 0 for X e [0,7 ) where A* > A and

that u u I if X e [X, ) - we use here the notation of Remark 1.11 above. Indeed we

just need to show that I > 0: if one had I 0, then using the main result of

A. Ambrosetti and P. H. Rabinowitz (4) we would deduce that (0.1 - X ) should have a

solution u2 with

1 2 *

f U2) - X*F(u )dx > 0
2 2 2

In addition, one would have I < 0 for A > X and therefore this would imply > 0

in R. Now because of the stability properties proved in [24, this would imply U1 U1

for A > A . Now by continuity one would have

IV. u
2 

- X*F(u )dx 0
2 1

And this would contradict the uniqueness of the solution of (0.1 - \ ).

-13-



Proof of Theorem 1.5: We already know that X is finite and we will just prove that

1) X is positive, 2) if there exists a solution of (0.1 - 0) and if Q is star

shaped that for all X > A0, there exists a solution of (0.1 - X). The remaining

statement of the Theorem is about the existence of u2 and we refer to H. Berestycki and

P. L. Lions [8], [9] (the method uses a topological degree argument somewhat similar to the

one used in the proof of Theorem 1.2).

1) X is positive:

indeed if (0.1 - X) had a solution u for X arbitrarily small, for X small enough we

would have

-Au = Xf(u) 4 u in R, u > 0 in 0, u = 0 on a0

And this is clearly impossible.

2) Let us suppose that there exists a solution uI of (0.1 - A0 ) and let A > A0 - we

may assume that Q is star shaped with respect to 0. Then the existence of a solution of

(0.1 - X) is equivalent to the existence of a solution of

(16) -Au = 0f(u) in 2"' Q = S', u > 0 in a', u = 0 on a0

M I = {(L)'/2 x, x S)
0)

Remark that a c S'. Therefore using the general results of [7], if we extend uI by 0

to 2', we obtain a weak subsolution of (16). It is easy to build a supersolution above

ul, using the assumption (15) and we conclude involving classical results on sub and

supersolutions.

Remark 1.13: Again we summarize the results of this section with a few "bifurcation

diagrams" (all the remarks made on those diagrams in Remark 1.7 are still valid here). In

all these diagrams we assume at least that f is sublinear (and satisfies (10') or even

(15) - the other precise assumptions can be found in Theorems 1.3 - 5).
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Case 1: f'(0) = 1, f(t) < t for t > 0, t small

Case 2: f'(0) 1, f(t) > t for t > 0, t small

Ex.:- f(t) =t + at - t 3, L, B > 0. IiL

Case 3: f'(0) 4 0 X I

.:f~ - + 2  3 2 l i
Ex.: f(t) *- :t + v - V > 0, V> 4V > 0. u

Remark: The case where

lim f(t)t
-  

.4-
t* 0

+

is nearly included in Theorem 1.3. In this case one has a maximum positive so'ution of

(0.1 - A) for all X > 0.

Case 4: lim f(t)t
-  +

t- 0t 0+

Ex.: f(t) =t
p , 0 < p < 1.
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11. The case when f(O) > 0:

11.1. Superlinear nonlinearities

In this section we still assume that f is locally Lipschitz continuous from R

into R. We assume now that

(17) f(O) > 0

We will restrict our attention to the case when f satisfies

(9) f(t) > 0, for all t > 0

(again let us indicate that the case when f vanishes for some reduces to the sublinear

case).

Our first existence result is the following:

The-rem II.1: Let us assume that f satisfies (17), (9), (1') and (3), (7); and suppose

in addition that 0 is convex. Then there exists X > 0 such that

i) for 0 < X 4 , there exists a minimum positive solution uA of (0.1 - X)

-Au = Af(u) in Q, u e C2 (), u > 0 in 0, u = 0 in DO.

ii) If A > A , there exists no positive solution of (0.1 - A).

iii) If 0 < X < X , then there exists at least one positive solution u, of (0.1 - X)

distinct from uA i.e. satisfying: uA > 2i in Q.

Remark 11.1: Again the assumption (7) (and the convexity of 0) is purely technical and

we believe it is not necessary: this assumption is used only in iii) in order to insure

some a priori estimate and the Theorem (and its proof) remains true with any assumption

(replacing (7)) insuring a priori bounds of the solutions of (0.1 - A) (such results can

be found in (30] and in (19]).

This. result is essentially due to D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum

(30]. Statements i) and ii) are somewhat classical and easy to prove since once we know a

positive solution u of (0.1 - A ) for some A > 0, u is a supersolution of
X00 0 Xu0

X0 X0

(0.1 - A) while 0 is always a subsolution. Therefore i) and ii) follow easily from the

general results of H. Amann (1].
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We will see that the proof of iii) shows a little more than statement iii): if

0 < P0 < A0 < X are fixed, we will prove that there exists a connected component C in

R x C I() such that for all (X,u) e c with x e [iP0,0 ] then u solves (0.1 - X)
0 

00
and is distinct from uA , In the convex case a lot more can be said (see [30] and Theorem

11.2 below).

Remark 11.2 The example f(t) - a + $t with a, > ) 0 shows that assumption (W') is

necessary in order to have

i) a solution for X = A

ii] at least two solutions for 0 < A < A

Indeed in this case it is well-known that (0.1 - A) has a solution if and only if
* 1-1

A < A = A and the solution is unique.

.
Proof of Theorem II.1: Let A < A , we know there exists a solution u . of

(0.1 - ). Thus u is a supersolution of (0.1 - A) and u < u in Q. We are

going to prove there exists a solution uX of (0.1 - A) such that

uA A u * in 2 .

To this end we will use a topological degree argument (somewhat similar to the one used in

the proof of Theorem 1.2).

In all that follows, C will denote a positive constant such that all solutions u

of (0.1 - X) satisfy: hug < C. In addition since f is locally Lipschitz, there
C (5)

exists i such that

Af(t) + lt is nondecreasing for t e [0,C]

Finally we define a compact map K from C1 (i) into Cl( 2h v = Ku is the solution of
0 0

-Av + iv = Xf(u) + wu in i2, v e C2 (), v = 0 on ai

Let B and 0 be the following bounded open sets in C ():
0

B [U e C (Q), OUR < C, u > 0 in i, -L < 0 on aQ)B u C0 1I

0 C 1(ij) an

S uB, u< u onin .
X Uan a n (!!
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We claim now that the degrees of I - K on B, 0 (with respect to 0) are well

defined and are equal to:

d(I-K, B, 0) = 0, d(I-K, 0, 0) i

The fact that these degrees are well defined is obvious from the definitions of B and

0. In addition the computation made in the proof of Theorem 1.2 is easily adapted to this

case and it shows:

d(I-K, B, 0) - 0

Finally 0 and u * being respectively sub and supersolution of (0.1 - X) it is clear

that K maps into , and since is convex this implies

d(I-K, 0, 0) 1 

Indeed take e 0 and define Kt = (1-t)P + tK (for 0 4 t < 1), Kt maps

into 0 and thus

d(I-K, 0, 0) = d(I-Kt, 0, 0) = d(I-P, 0, 0) = I

since P e 0.

We are now able to conclude since by the additivity of the Leray-Schauder degree, we

have:

d(I-K, B-O, 0) =-1

and this means there exists a solution u of (0.1 - A) in B - 0; and this proves the

theorem.

We now consider the case when f is convex; this case has been studied by many

authors: some simple interesting cases were discovered by H. B. Keller and D. S. Cohen

[37], H. B. Keller and J. P. Keener [3R]. More general results were obtained in T. Laetsch

[391, M. G. Crandall and P. H. Rabinowitz [261, C. Landle [5], F. Mignot and J. P. Puel

[471, D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum [30]. Some particular results

(in the case when S1 is a ball) are described in J. Leray [401, I. M. Guelfand [31], D. D.

Joseph and J. S. Lundqren [36], C. M. Brauner and B. Nicolaenko [17] (we will come back on

these Particular results).

We give now a new existence result (some properties of the solutions may be found in

1the references listed above).
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Theorem 11.2: Let us assume that f satisfies (17), (9), (V) and that f is strictly

convex on R+. Then there exists A > 0 such that for 0 < A < A there exists a

minimum positive solution U. of (0.1 - A) (in addition 1A is of class C
1  

with

*

respect to A) and such that for A > A there exist no positive solutions of

(0.1 - X).

If we assume in addition (3), (7) and that n is convex, there exists a connected

component C in [0,A ] x C 2() such that i) for all (A,u) e C, u is a positive

solution of (0.1 - X) (except if A = 0, then u = 0), ii) for all A e (0,A ) there

exists u distinct from u such that (X,u) e C; iii) (A,u ) e C iv) If (X,u) e C

and A - 0 +, u 4 UA then Dug. + +-. Finally if we assume (4) instead of (7) and if the

convexity of 0 then for all A e (0,A) there exists a solution distinct from uX of

(0.1 - A).

Remark 11.3: The results of [36] show that the last part of the theorem is nearly

optimal. We conjecture that the fact solutions of (0.1 - A) distinct from uX lie on a

connected component C is still true without assumption (7).

Let us finally indicate that the question of the existence of a (unique) solution of

(0.1 - A ) is investigated in [26] and [47].

Again assumptions (7) and of the convexity of S1 are technical and are used in order

to insure a priori bounds of the solutions of (0.1 - A) (as in Theorem II.1 - see Remark

II.1).

Remark 11.4: It is shown in [36], that the set of solutions of (0.1 - A) may be rather

complicated since in some exarples (f(u) = e
u
, 3 < N 4 9 and 2 being a ball) we have

the following "bifurcation diagram":

0 0
0 0 A*

~I-19



(in particular (0.1 - A ) has infinitely many solutions).

For the second part of Theorem 11.2 we refer to [30] and we are going to prove only

the last statement (the method used here is very similar to the one used to prove Theorem

11.3 in (30]).

Proof of Theorem 11.2: Let tn o 1, tn t +- such that f is differentiable at fn. Let

us define

f t) = f(t ) + f'(t )(t - t ) + (t - t )Y for t ; tn n n n n n

f t) = f(t) if t < t
n n

where y is any constant in (1, N_2).

Since fn is convex and fn = 
f  

for t < tn, we claim that for n large enough

, is still the minimum solution of the problem (0.1 - A) corresponding to fn" Indeed

by [47], we have for n large enough that u is solution and

n

n1 = X1 > 
0

1 1>

where n (resp. A1 ) is the first eigenvalue on H1(0) of the operator
0

-A - Af(u ) (resp. -A - Xf'(u,))
n -X-

And this implies (see [47]) that u is the minimum solution (for fn). Now, by [261, we

know that (0.1 - A) for fn has a second positive solution un : un > u, in 2.

Moreover, from an easy inspection of the proof in [26], we see that

[ 2 'Vun 2 - F (un)dxl ' Const. where Fn (t) = t fn(s)ds.
0

Since A A > 0, it is easy to prove that fu - u, remains bounded away from 0.
1 n

Now exactly as in the proof of Theorem 11.3 in [30], we derive a H
I 

bound on U n ,

which implies a C
2  

bound on un . It is then straightforward to pass to the limit.
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Remark II.5: In the last statement of Theorem 11.2, we may as well replace (4) by (5) (the

construction of fn is a little more technical in this case).

We now summarize the results of this section by a bifurcation diagrm representing the

set of solutions of (0.1 - X) (under the assumptions of Theorems II.1 or 11.2)

Of course let us recall that when f has a supercritical growth (ex: f(t) = a + 6t
p , 

a,

> 0, p > E+2 various modifications of this diagram may happen (see 140), [36)).
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11.2. Sublinear nonlinearities:

We still assume that f is locally Lipschitz continuous from R into R and that

f satisfies (17).

We have the following easy existence result:

Theorem 11.3: Let us assume that f satisfies (17) and either (9) and

(101) lim f(t)t
- 

= 0
t ++

or that there exists 6 > 0 such that f(B) 
= 

0. Then for all X > 0, there exists a

minimum solution u. of (0.1 - X).

Remark 11.6: If we asqume instead of (10'), F5. f(t)t
- 

= K ( + , then the existence

result is valid for all X e (0, AI K).

The proof is a straightforward application of order arguments since 0 is a

subsolution and it is easy to build a supersolution (for example B is a supersolution in

the case when f(S) = 0).

The following result shows that for some class of nonlinearities f, there is

uniqueness (but we will see in Section 111.2 that this is not true in general).

Proposition II.1: Under the assumptions of Theorem 11.3 and if we assume in addtion that

f is concave thn u is the unique solution of (0.1 - X).

We believe this result is well-known but we were unable to find a precise reference

(see H. Berestycki [6) for a related result). The proof is an easy adaptation of an

argument from [61. We will denote by X1(-A - c(x)) the first eigenvalue of the operator

-A - c(x) for some c(x) e L(Q).

f(u ) - f(0)

Since we have: -Au, = { }u + f(0), u > 0 in 0 and since f(0) > 0,

necessarily we have:

X (-A - {f(u) - f(0)}Ux) > 0

(if u = 0 this is to be urderstood as f'(0 ) - which exists since f is concave).
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On the other hand, if v is a solution of (O.?-A) distinct from u , we have

f(v)-f(u )
-A(v-v ) = - (v-u), v-u > 0 in 2

and thus

f( v)- f (u)

-- u_

(again (f(v) - f(u)))(v-ux) is to be understood as f'(u+) on the set v - that

is M). But since f is concave, we have

(f(v) - f(u ))(v-ux)
-
1 4 (f(u ) - f(v))u x

This inequality contradicts the spectral informations given above in view of well-known

comparison principles of first eigenvalues.

The bifurcation diagram of this section looks like

U/

E x . : f t ) = , + t

a1 ', 1 0, a~ (0,-1)
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III. The shape of the nonlinearity and multiplicity results.

III.1. Buckles and multiplicity results.

Again we assume that f is locally Lipschitz continuous from R into R. In this

section we will consider the case when f changes sign and we will show how this type of

behavior may affect multiplicity results. The results of this section are adaptations or

extend results of H. Berestycki and P. L. Lions (10].

The first type of results we want to discuss concerns the case when f changes sign

once (or more) between 0 and some 8 such that f(8) = 0 and when f(t) is positive

and superlinear for t > 8. By sections 1.2 and 11.2, we have existence results for

solutions whose maximum is less than 8. We want to prove here that under general

assumptions there exists another solution whose maximum is larger than 8.

More precisely we assume:

(18) 6 >0, f(8) = 0 and f(t) > 0, for t> 8i

(1) lim f(t)t
- I  

> X1 ,
-1+

and of course f(0) ) 0.

Theorem III.1: We assume that f satisfies (18), (1), (3), (7) and f(0) ) 0; and that

i is convex. Then there exists u solution of (0.1) satisfying:

max u >8

Remark III.1: Again the convexity of Q and the assumption (7) are purely technical

conditions, which are used here in order to ensure a priori bounds on solutions of

(0.1). In particular we could replace these conditions by other ones which imply a priori

bounds (see [30] and [19]).

Remark 111.2: Theorem III.1 can be combined with the results given in sections 1.2 and

11.2 to state general existence results. We give below some examples.
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Example II.1: Assume that f satisfies

i) f(t) > 0, for t e t0,a)

ii) f(t) < 0, for t e (a,8) [if o = 8 we just assume f( a) 01

iii) f(t) > 0 for t e (M,+-)

and that f satisfies (1), (3) and (7).

Then there exists two positive solutions ul, u2  (distinct) of (0.1) such that

0 < u 1(x) < B < max u2' for all x in Q

Indeed we just need to combine Theorem I1T.1 with Theorem 11.3 (remark that since u1  may

be chosen to be the minimum solution and therefore to satisfy: u (x) < u 2(x) in 2)

Example 111.2: Assume that f satisfies:

i) f(0) - 0, f'(0) = 1, f(t) > 0 for t e (0,a)

ii) f(t) < 0, for t e (a,R) [if a = P we just assume f(a) = 01

iii) f(t) > 0, for t e (6,+-)

and that f satisfies (1'), (3) and (7).

Then if A is the infimum of all X > 0 such that there exists a solution of

(0.1-A) less than a. Then we have:

*) 0 < A 4 A, and for X < A, there exists a positive solution u1  of (0.1-x)

maximum among all positive solutions of (0.1-A) less than a;

•) If X* < i , then for X < X < A1, there exists a second solution u2 of (0.1-A)

satisfying: 0 < u2 < u 1 in Q. In addition, there exists a maximum positive

so'ution of (0.1-A )

*) For all A > 0, there exists a positive solution u3 of (0.1-A) satisfyino

max u >

Indeed this is just the combination of Theorem 1.4 and Theorem 111.1. (We could also

combine Theorem 1.5 and Theorem II1.1 - see also the bifurcation diaqrams below.)

Proof of Theorem III.1: We are going to use a topoloqical deoree arqument and we will

aqain 1sp the notations of the nroofs of Theorems 11.1 (or 1.2). ain- r intorwet

only in Positive solutions we may assume
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f(t) - f(t
+
) for all t e R

We choose C > 0, large enough, w > 0, the ball B ani the compact map K as in the

pron" of Theorem II.1.

We already know that d(I-K, B, 0) - 0.

We finally define 0 = {u £ B, u(x) < 8 in Q). Since f(a) - 0 it is clear that

K mans C into 0 and since 0 is convex, in the same way as in the proof of Theorem

II.1, this implies: d(I-K, 0, 0) - 1. Therefore we have

d(I-K, B-C, 0) - I

and this means that there exists a solution of (0.1) (with f(t) replaced by f(t
+
) thus

positive satisfying: max u > 0 - indeed remark that the case max u 0 is ruled out by
S S

the strong maximum principle.

We now turn to another type of results: we consider the case when f satisfies:

(19) y > 0 > 0 such that f(B) = 0; f(t) < 0, for t e (My) (if 8 = y, this

assumption is not needed);

(15')lim f(t)t
- 
1 0 and f(t) > 0 for t > y (resp. f(6) = 0 for some 6 > -y)

t++.

(20) f f(s)ds > 0, for some > 0 (resp. for some 6 > C > 0);
0

and of course f(0) > 0.

We want to show how this implies the existence for X large enough of two solutions

u i of (0.1-A) such that 0 < u1  u2 in Q and max u i > y (resp. 6 > max u, > y).

Theorem 111.2: We assume that f satisfies (19), (15'), (20) and f(0) > 0. Let A be

the infimum of all X > 0 such that there exits a solution u of (0.1-X) satisfying

max u > a (reap. 6 > max u > 0). Then X is finite and positive. If Sj is star-

shaped we have

i) for X ) X , there exists a maximum positive solution u I o-f (0.1-N) (reap.

maximum among all positive solutions of (0.1-N) less than 5) such that

max uI > y.

-26-



*

ii) for X > X , there exists a second solution u2 of (0.1-X) which satisfies:

0 ( u2 < u1  in , max u2 > y.2

If Q is not star-shaped, i) is true for X large enough and ii) is replaced by

iii) if there exists a solution of (0.1-X) such that max u > y (resp. y < max u < 6)
a

then there exists a maximum positive solution ul of (0.I-A) (resp. maximum among all

positive solutions of (0.1-A) less than 6) such that max u1 > y; and there exists a
S

second solution u. of (0.1-X) which satisfies: 0 < u2 < ul _i S, max u2 > y.
S

Again, as in Theorem 1.5, we do not know if the assumption that a is star-shaped is

necessary.

Remark 111.3: Theorm 111.2 can be combined with the res,ylts given in sections 1.2 and 11.2

to state general existence results: indeed we already know existence results for solutions

less than 8 and Theorem 111.2 give existence results for solutions whose maximum are

larger than a. Instead of giving examples like Examples III. 1-3, we refer the reader to

the bifurcation diagrams below.

Remark 111.4: This result is given in [10] (and extends a more particular, previous result

*
of K. J. Brown and H. Budin [2113, where also some estimates of A are also obtained.

Part i) of the Theorem is proved by a straightforward variational argument, while the proof

of part ii) requires a topological degree argument somewhat similar to those made above.

We now conclude again the section by a brief list of "bifurcation diagrams": let us

recall that the remarks made on the validity and optimality of these diagrams are still

valid for those below.

Case 1: f(0) = 0; f'(0) = 1; f(t) < t for t > 0, t small; f(t) > 0 for t e (0,u)

f(t) < 0 for t e (a,S); f(t) > 0 for t > 6; f superlinear.

FX.: flt) = t - t+

N+2
Sp N-2
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Case 2: f(O) 0; f'(0) Ii f(t) > t for t > 0, t small; f(t) > 0 for t e (O,a)

f(t) < 0 for t e (a,8)l f(t) > 0 for t > a; f superlinear.

Ex.: f(t) = t + t
p 

- at
q + t q

(a large, p < q < r < N+2

0

Cam 3: f(O) = 0; f'(0) r 0; f(O) - 0, f(t) > 0 for t > 8 > 0; f supetlinear.

Ex.: f(t) = -t +2 - wt q + vr

< <N+2
(1 < p< < r < -,0 < v <<

Case 4: f(0) > 0. f(t) > 0, for t e f0,a); f(t) < 0, for t e (a,a); f(t) > 0,

for t e (a,+); f superlinear.

Ex. : f(t) =X - wt+ vt~

(AO,; > 0, v small, 1 < p < q < N+2
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Case 5: f(O) - 0; f'(0) = 1; f(t) < t for t > 0, t small; f(t) > 0 for t e (0,a)

f(t) < 0 for t e (aa), f(B) = 0; f sublinear for t > 8.

Ex.: f(t) = t - t
p 

+ pt - vt
r

(1 < p < q < r, 0 < v << i)

Case 6: f(0) = 0; f'(0) = 1; f(t) > t for t > 0, t small; f(t) > 0 for t e (o,u)

f(t) < 0 for t e (a.,$), f(B) = 0; f sublinear for t > 8.

SuH
Ex.: f(t) = t + t 

p 
-

q 
+ ut

r 
- tr

(i<p , q < r < s, 0 <v << p << i

0 ** 1l

Case 7: fNO) = 0; f'(0) 0; f(a) = 0, f(t) < 0 for t e (W,O), f(O) = 0; f sublinpar

for t >

f(t) -t + t
p  

-i 
q  

+ 
r  l-S

< r

1 2

2
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Case 8: f(O) > O; f(t) > 0 for t e [O,a); f(t) ( 0, for t e (c,8), f(B) = 0; f sub-

linear for t > 8.

p q tr u 1

Ex.: f(t) = I - t + pt - vt I

(0 < p < q < r,0< c <'<) I 

/
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111.2. Bumps and the shape of the nonlinearity:

We want, in this section, to show how bumps or some "slightly oscillatory" shape of

the function f may affect the "bifurcation diagrams" or the multiplicity results. Let us

describe in some unprecise way two results we prove here: the nonlinearity f (t) will

depend on a parameter C e [0,1] and in the figures below we present both the shape of

f and the associated (minimal) "bifurcation diagram."

Example 1:

Figure 1;

f I(t) ll

0 -t 0

Figure 2:

f(t) / IHull'

0 < Fl < I

0 >t 0

Figure 3:

f (t) llullc.

~2 1

0 t >
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Figure 4:

0 al t 0

Example 2:

Figure 1:

f(t) ll

o t 0

Figure 2:

0< E <1

Figure 3:

f -i 2 t

0 1 t 0

N v -32-



JP

Figure 4:

f0(t) fuI

0 C t 0

We begin by explaining what Example 2 means: this will be clear in view of the two results

above:

Theorem 111.3: Let f(t) be a locally Lipschitz function from R into R, satisfying:

(21) f(t) > 0 for t ) 0 (resp. for t e (0,a)), lim f(t)t
-  

= 0
t ++

(resp. f(a) = 0)

Then there exists a maximum positive solution u, of (0.1-A) (resp. maximum among all

positive solutions less than a) and a minimum positive solution u thus satisfying

0 < u 4 u in Q. Now, if we assume there exist 0 X1 < X 2 < +- such that for

A e (A 1A2 u X u and lim I u 4 lim + u , then, for all A e (A ,A 2 ) there exists

a third solution uA of (0.1-A) such that:

0 < u < u < uX in Q

We now apply this theorem on the setting of Example 2.

Corollary I1.1: Let (f (t) e0,11 be a family of locally Lipschitz functions from R

into R+ satisfying

0 < f (t) for t e [0,1), f (1) = 0

f 0(t) > 0 for t e 10,a) and t e (o,1], f0 (a) = 0; f (t) = f 0(t)

on [0,(-C) + ]

fFCt) > f (t) for t e 10,1
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Then there exists X > 0, and u) (resp. U)) for X ) X satisfying: u (resp. 1

is the maximum (resp. minimum) solution less than 1 of (0.1-A) - for f 0(t) - and

0< m < a < max u., 0 < Ex < u, < 1 in Q

On the other hand, for all X > 0, there exists uA, (resp. 2,,,) satisfying: u,

(reap. u,) is the maximum (resp. minimum) solution less than 1 of (0.1-) - for

f (t) - and 0 < u 
< I in 2.

Now let T > A* there exists C > 0 such that for £ 4 C. we have: u $ u ,e

for all A £ [ ,)]. And for such C and A there exists a third solution u ,£  of

(0.I-) - for f E(t) - satisfying

0 < 
< 

u 
< 
uXE in a

The first part of Theorem 111.3 and Corollary III.1 is deduced from the results of the

preceding sections: indeed the existence of u., uX (in Theorem 111.3) and of u,e,

uXE (in Corollary III.1) is deduced from section 11.2 (this is a standard application of

super and subsolutions arguments since 0 is a subsolution and 1 is a supersolution, for

example, in the setting of Corollary III.1). And the existence of X ' U' U). (in

Corollary III.1) is deduced from section III.1 (Theorem 111.2).

Before proving Theorem 111.3 (that is the existence of uQ) we derive Corollary

III.1 from Theorem 111.3.

Proof of Corollary II.1: We first remark that since f are nonnegative we have

obviously:

U'--,'F 1!,', are nonincreasing with X

in addition, since f > f0 ' we have:

u )u for X > 0; u, AC) u for X > X

Now, to conclude, we just need to remark that if X ( A, for c small enough we have

X,£ =N* "Indeed, if X < T

max (max u O < a < maxu
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Therefore for E 4a - a_, u is also a solution of (0.1-A) for f (t) but, since we

already know that u ,£ ) uX and that u ,E is the minimum solution, we conclude:

Su uA  for X ( A, E small enough.

Proof of Theorem 111.3: As remarked above, we already know the existence of

and of u; in addition we know that uA and uX increase with A. We now assume

that for A e [AIX 2] u X u X and let A e (A1 ,A2 ). To prove the existence of the third

solution we are going to use a topological degree argument. To simplify, we will assume

that there exists a > 0 such that f(Q) - 0.

Let us first introduce a few notations: first we replace f(t) by f(t) defined by:

f(t) = f(0) if t < 0, i(t) = f(t) for t e [O,a) , f(t) = 0 for t > a. Let W > 'j be

such that Af(t) + wt is nondecreasing, for A e [A1,A2). We now introduce a cmpact map

K from C I((H) into C '(F): for u in Cl((F), v = Ku is defined by
0 0 0

-Av + Wv = Xf(u) + wu in S1, v e C 2(), v = 0 on N

Remark there exists C > 0 such that IKul - < C, for all u in CI (F) satisfying
C (0)

0 • u ' a in a.

We next define three open sets:

- au

C (2 )

If j {u # W , the neuessariny u, < u, in> .onc weA assum 1 i + u Cilm

1 1

- - a {a
=AueC( ,0<u<u i ; 0 n > 3nA on a(-, glu

n 
1 -(C}0

2- 2 C ((A)

If 3 J M 0, then necessarily u • uI  in (A. Since we assume lima f u% lira + u
1I 2 jfA UA -

and since we may take A1IA 2 as near A as we want, we see that we may assume

We are going to prove that the following degreees exist and are equal to d(I-KI,0) =

d(I-K,J,U) = d(I-K,J,O) = 1. This is quite obvious since K maps I, J, J into I, J, J

and since I, J, J are convex. Therefore we deduce

d(I-K, I - (1 3), 0) = d(I-K,I,0) - d(I-K,J,O) - d(I-K,J,0) -1
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and this implies there exists a solution u, of (0.1-X) which lies in I - (J n J).

Since u lies in J and u lies in J, we obtain a third solution as stated in

Theorem 111.3.

Remark 111.5: In Corollary II.1, we may replace the assumption f (t) = f 0(t) on

[0,(c-E)
+ ]  

by:

f (t) - f 0(t) uniformly for t e [0,a]

Then in the proof, we need to use a variational argument in order to prove that

maxu < u for X e[A* and for e 4 c
, , 0

We now turn to a result concerning the Example 111.1: for the sake of simplicity, we

are not going to state an abstract result like Theorem III.1, but instead we give directly

a result similar to Corollary III.1. Let us first state a few assumptions we are going to

need: let (f (t))Ee[0,1 ] be a family uniformly (in e) locally Lipschitz functions

satisfying

f (0) = 0, f'(0) exists and f'(0) = 0, fc(t) > 0 for t> 0,

f (t) ) f 0(t) for t > 0
(21)

f 0(t) > 0 for t e (0,a) and t e (a,+-), f0 (a) = 0;

+
f (t) = f 0(t) for t e [0,(-E)

and

-1
(22) lim f 0(t)t =

(23) lim f (t)t
-
N+I)

(N -
) 0, uniformly in c e [0,1]

(if N = 1, we do not need this assumption).

We assume here (23) only to simplify our setting (this assumption is used in order to

obtain a priori estimates). We may now state our result.
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Proposition III.1: Under assumptions (21) - (23) on (f (t)) [0,1j, there exists

X > 0, and u 1, u2 (for X > A ) satisfying: uI is a positive solution of (0.1-A)

(for f0 (t)) less than a and u2 is the maximum solution among all solutionAs less than

a. In addition, let X > X , then there exists C0 > 0 such that for any C < F0 and

for any X u i (i = 1,2) are also solutions uf (0.1-A) for f (t) and in

addition there exists a third solution u, of (0.1-A) (for f (t)) satisfying:

max uA > 0.

Proof of Proposition III.1: The first part of Proposition III.1 is deduced from Theorem

F2 -- *
1.5. In addition we know that u2 is increasing with respect to X. Now let A > A be

fixed, we have tr i e [ ',

2 2
max u <max u = a<a

7 A

Now, let us choose C = 1-:_ _ A 1. It is clear that for E c F and for A 6 (A ,e 120

u(1 = 1,2) are solutions of (0.1-A) for f (t). And we are going to prove the

existence of a third solution uX by a topological degree argument.

We first introduce a few notations: we replace f C(t) by f C(t
+
) fi(t and we

choose P > 0 such that A f E(t) + wt is nondecreasing for t < a and for X e [ ,X].tQ

We next define a compact map K from C ( ) into C (C): for u in C (C), K u = v

is defined by

2-
A+ Luv =Af,(u) + wu in C2, v e C (T) , v = 0 on AC

We finally choose C laryo enough such that, in particular, all solutions of (0.1-A) for

f E(t) (t e 10,11) are bounded by C in the space CI () - this is possible because of

the assumptions (22) - (23) which imply, in view of [191 , the a priori bounds.

We now define two open sets:

B= u e C(), 0 U0 < c}

UI
C (.e)

2
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As in the proof of Theorem 1.2, we can prove that d(I-K,B,0) exists and is equal to:

d(I-K ,B,0) = 0.

We want to prove now that d(I-K ,O) is well-defined and is equal to 1. Indeed if it

were not defined, this would imply the existence of a solution u of (0.1-A) for f (t)

satisfying: 0 < u - a-a- in 0 and max u 
= 

C2. Since fr(t) = f(t) for

a+01 2 Q 2 C
t e [0, -2--], if C 4 E., u is also a solution of (0.1-A) for f0 (t) but

2 2
max u > max uA and this is impossible since u is the maximum solution (among solutions

less than a). Therefore d(I-KE' 0,0) is well-defined for c 4 e. and the argument given

above shows: d(I-K C0,0) = d(I-K,,,0O), for 0 4 C . 0 Next, we remark that all

solutions less than a of (0.1-A) for f0 (t) satisfy

max u 4 max u' = a, < a
Q 2

Therefore if J = fu e B, -1 < u < a in P), we have:

d(I-K 0,J-0,0) - 0.

And we deduce d(I-K ,0,0) = d(I-K ,J,0), for 0 < e 4 e 0 But K0 maps into J

and J is convex and this implies (see similar arguments given in the preceding sections):

d(I-K10,J,0) = +.

Hence

d(I-K ,B-0,0) = d(I-K ,B,0) - d(I-K ,0,o)

= -d(I-K0,3,0) = -1

And we are able to conclude.

Remark 111.6: we want to conclude this section by remarking the two examples given above

and the results we have proved are only examples of a general feature: in particular one

can build other examples by changing the behavior of f near 0. The general feature is

that large bumps in the shape of the nonlinearity may create two bending points (as in

Figum 3 in Examples Ii.1 and 111.2) and we could combine the arguments given above with

the results of sections I, II and III.1.
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IV. Variants and open questions:

IV.1: Unbounded domains.

We are still concerned with the problem (0.1) but we assume that Q is unbounded

and hence we consider the problem:

2-
-Au - f(u) in fZ, u e C 29), u > 0 in 0

(24)
u=40 on 3Q, u(x) + 0 as 1xi + +-, x e

In some cases this problem is more complicated than the one considered in the preceding

sections since in view of the results of M. J. Esteban and P. L. Lions [271, [281 the

qeometry of (2 seems to play an essential role. Let us recall a result taken from (27]

(the proof is based on an extension of a powerful identity due to S. Pohozaev (51]):

Theorem IV.1: Let f(t) be locally Lipschitz from R into R and suppose that

f(0) = 0. If we assume that ( satisfies

(25) 3 X R N, IX
I = 

1 such that n(x) ° X > 0 on DD and

n(x) X 0 on 3Q

Then, if u satisfies

Au-u f(u) in Q, u = 0 on M(, u e L (Q2 n B R R <

(24') (
7u e L

2 
(), F(u) L (Q)

where P(t) = !t f(s)ds, necessarily we have

u 0

Very few existence results for (24) are known except in the case when Q = R (or

when Q is a band [161): in this case a nearly optimal existence result is given in H.

Berestycki and P. L. Lions [71 (see also [111, t12], [14]) which we recall here:

Theorem IV.2: Let N > 3 and let f be a continuous function from R+ into R

satisfying f(0) = 0 and



n+ 2

N--2
(26) 0i F(t)t 0, with r f (t)t

(27) F({) >0, for some > 0

Then there exists u e c2(RN), spherically symmetric, positive, decreasing with respect

to r - lxi, satisfying

N 2 N I N 2N/(N-2)N
(28) -Au = f(u) in R , Vu e L (R ), F(u) e L (Nt), u e L )

R

Remark IV.1: Under quite general assumptions it is known (see B. Gidas, Wei-Ming Ni,

L. Nirenberg [321, [331) that any positive solution of (29) is necessarily radial (up to a

translation, of course). In addition some results conerning the uniqueness or the non

uniqueness of the positive radial solution are known (see [50], [46], [13]).

Remark IV. 2: Theorem IV.2 extends some particular results proved by C. V. Coffman [221,

Ryder (541, Nehari [481, M. S. Berger [151, W. Strauss [551 and Coleman, Glazer and Martin

[23].
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IV.2 Open questions:

We now conclude with a list of open questions

(a) the main open question concerning the problem considered here is the proof of a priori

bounds of solutions u of (0.1) where f satisfies only

lim f(t)t'1 > X , lim f(t)t
-
(N+

2
)/

(N - 2
) = 0 (for N > 3)

t++. tt+.

The best result in this direction is given in (30] (see also [19] and B. Gidas and

J. Spruck [341).

(b) it is known that, if Q is star-shaped, there is no solution of (0.1) if

f(t) = t
P 

and p ) 11.2 (for N ) 3). On the other hand, it is very easy to realize that
N-2

if 0 is ring shaped (a = {xj e (a,b)) then (0.1) has a solution for f(t) = cP

and 1 < p < -. It would he interesting to understand the relation between the geometry of

Q and the existence of solutions of (0.1) for supercritical nonlinearities (some related

results are given in J. Hempel (351 and in H. Brezis and L. Nirenberg [18]).

(c) an important question for applications is to extend the results concerninq (0.1) to

systems of the type

-Au. = fl . u in Q, u e C (), u. > 0 in Q, u i = 0 on 31t

Very few results are known for such systems.

(d) a few qualitative properties of solutions (0.1) are known: symmetry oroperties

(B. Gidas, Wei-Minq Ni and L. Nirenberq [321, [331), behavior in the neighborhood of

isolated sinqularities (C. Loewner and L. Nirenberg (4q), L. Veron [561, H. Brezis and

L. Veron [20], P. L. Lions [43], B. Gidas and J. Spruck (341). A natural question

which remains open is to deduce whether solution u of (0.1) in convex domains have

convex level sets (i.e. {u > t) is convex). In a very special case

(f(t) = At - pt
0
, A,j > 0, p > 1) this is proved in P. L. Lions !441 (actually it is

proved that u is Log concave, which implies in particular the convexity of level

sets).
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(e) it would be interesting to understand the relation between the geometry of 0 and the

existence (or non existence) of solutions of (0.1) when Q is unbounded (see

section IV.1 above).

(f) a difficult question concerns the uniqueness problem for (0.1) or to prove exact

multiplicity results: very few are known (see the references in the sections above)

(g) related problems concern the existence of solutions u of

-Au - f(x,u) in S , u e C
2
(i(), u - 0 on M

with non constant sign and where f(x,0) 0. A lot of partial results are known and

we do not want to give any references, but at the moment there is no general

understanding of this question. Let us also remark that this seems to be more a

challenqinq mathematical question than a question important for applications since in

most of the applications where such problems arise, u represents a concentration or

a temperature or a density and thus has to be nonnegative (and thus the problem

reduces to (0.1)).

(W) a totally formal way of guessing how looks the bifurcation diagram of solutions of

(f.1-\l is to replace the operator -Au by A1u (and (0.1-A) reduces to a simple

equation I t = f(t)). This often gives a good qualitative account of the solutions

set but it may be completely false as the following example show: take f(u) = e
u ,

2 = H (hall), 3 4 N 4 Q since in this case there exists 0 > 0 such that (0.1-A
(hl) 3 0 > uhta 0Y

has infinitely many solutions (see f361) while the equation XIt = Ae 
t has at most

two solutions.

It would be interesting to show a more rigorous connection between (0.1 - A) and the

equation A It - Af(t). Remark also that in the case of Neumann boundary conditions

(A = 0) this simple equation just gives all constant solutions of (0.1 - A).

-42-

i



REFERENCES

(1] H. Amann: Fixed point equations and nonlinear eigenvalue problems in ordered Banach

space. SIAM Review, 18 (1976), p 620-709.

[2] H. Amann: Nonlinear operators ir. ordered 8anach spaces and some applications to

nonlinear boundary value problems. In Nonlinear Operators and the Calculus of

Variations, p. 1-55, Lecture Notes in Math. #543, Springer-Verlaq, Bonn (1976).

[3) H. Amann: Existence of multiple solutions for nonlinear boundary value problems.

Indiana Univ. Math. J., 21 (1972), p. 925-935.

[4, A. Ambrsetti and P. H. Rabinowitz: Dual variational methods in critical point

theory and applications. J. Func. Anal., 14 (1973), p. 349-381.

[5) C. Bandle: Existence theorems, qualitative results and a priori bounds for a class

of nonlinear Dirichlet problems. Arch. Rat. Mech. Anal., 58 (1975), p. 219-238.

(6] H. Berestycki: Le nombre de solutions de certains probl~mes semi-lineaires

elliptiques. To appear i., J. Func. Anal. .

(7] H. Berestycki and P. L. Lio s: Existence of solutions for nonlinear scalar field

equations: I. The Ground Stat?, To appear in Arch. Rat. Mech. Anal.

[81 H. Berestycki and P. L. Lions: Some applications of the method of super and

subsolutions. In Bifurcation and Nonlinear Eigenvalue Problems, p. 16-41, Lecture

Notes in Math. 4782, Springer-Verlag, Bonn (1980).

(91 H. Berestycki and P. L. Lions: Une methode locale pour l'existence de solutions

positives de problemes semi-lineaires elliptiques dans RN
. 

J. Analyse Math., 38

(1980), p. 144-187.

[101 H. Berestycki and P. L. Lions: to appear.

[111 H. Berestycki and P. L. Lions: Existence of a qround state in nonlinear equations of

the type Klein-Gordon. In Variational Inequalities, P. 35-52, Ed. Cottle, Gianessi

and Lions, J. Wiley, New York (1980).

-43-

ism



[12] H. Berestycki and P. L. Lions: Existence of stationary states in nonlinear scalar

field equations. In Bifurcation Phenomena in Mathematical Physics and Related

Topics, p. 269-294, Ed. Bardos and Bessis, Reidel, New York (1980).

[13] H. Berestycki aM P. L. Lions: to appear.

(14] H. Berestycki, P. L. Lions and L. A. Peletier: An O.D.E. approach to the existence

of positive solutions for semilinear problems in R
N . 

To appear in Indiana Univ.

Math. J. .

[151 A . S. Berger: On the existence and structure of stationary states for a nonlinear

Klein-Gordon equation. J. Func. Anal., 9 (1972), p. 249-261.

(16] J. Bona and R. E. L. Turner: to appear.

[17] C. M. Brauner and B. Nicolaenko: Sur une classe de problemes elliptiques

nonlineaires. C.R.A.S., 286 (1978), p. 1007-1011.

[18] H. Brezis and L. Nirenberg: Personal communication.

[19) H. Brezis and R. E. L. Turner: On a class of superlinear elliptic problems. Comm.

P.D.E., 2(6) (1977), p. 601-614.

[20] H. Brezis and L. Veron: Removable singularities of some nonlinear elliptic

equations. To appear in Arch. Rat. Mech. Anal. .

[21] K. J. Brown and H. Budin: On the existence of posi* ve solutins for a class of

semilinear elliptic boundary value problems. SIAM J. Math. Anal., 10 (1979), p. 875-

883.

3t
[22] C. V. Coffman: Uniqueness of the ground state solution for a - u + u = 0 and a

variational characterization of other solutions. Arch. Rat. Mech. Anal., 46 (1972),

p. 81-95.

[231 Coleman, Glazer and Martin: Action minima among solutions to a class of Euclidean

scalar field equations. Coimm. Math. Phys., 58 (1978), p. 211-221.

[24] C. Conley and J. Smoller: Personal communication.

(251 M. G. Crandall ard P. H. Rabinowitz: Bifurcation, perturbation of simple eigenvalues

and linearized stability. Arch. Rat. Mech. Anal., 52 (1973), p. 161-180.

-44-



[26] M. G. Crandall and P. H. Rabinowitz: Some continuation and variational methods for

positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rat. Mech.

Anal., 58 (1975), p. 207-218.

[27) M. J. Esteban and P. L. Lions: Non existence de solutions non-nulles pour des

problemes semilineaires dans des ouverts non bornes. C.R.A.S., 290 (1980), p. 1083-

1085.

[28] M. J. Esteban and P. L. Lions: Existence and nonexistence results for semilinear

elliptic problems in unbounded domains. To appear in Proc. Roy. Soc. Edin.

[29] D. de Figueiredo, P. L. Lions and R. D. Nussbaum: Estimations a priori pour les

solutions positives de problemes elliptiques semilineaires. C.R.A.S., 290 (1980), p.

211-220.

[30] D. de Fiqueiredo, P. L. Lions and R. D. Nussbaum: A priori estimates for positive

solutions of semilinear elliptic equations. To appear in J. Math. Pures Appl. .

[311 I. M. Guelfand: Some problems in the theory of quasilinear equations. Amer. Math.

Soc. Transl. (Ser. 2), 29 (I63), T. 295-381.

[321 B. Gidas, Wei-Minq Ni and L. Nirenberg: Symmetry and related properties via the

maximum principle. Comm. Math. Phys., 68 (1979), p. 209-243.

[33] B. Gidas, Wei-Ming Ni and L. Nirenberg: to appear.

[341 S. Gidas and J. Spruck: to appear.

[35] J. Hempel: On a superlinear differential equation, Indiana Univ. Math. J., 26

(1977), p. 265-275.

(361 D. D. Joseph and T. S. Lundgren: Quasilinear Dirichlet problems driven by positive

sources. Arch. Rat. Mech. Anal., 49 (1973), n. 241-269.

[37] H. B. Keller and D. S. Cohen: Some positive problems suggested by nonlinear heat

generation. J. Math. Mech., 16 (1967), p. 1361-1376.

(39] H. B. Keller and J. P. Keener: Positive solutions of convex nonlinear eiqenvalue

problems. J. Diff. Eq., 16 (1q74), p. 103.

[3q] T. tLetsch: On the number of solutions of boundary value problems with convex

nonlinearities. J. Math. Anal. Appl., 35 (1971), p. 389-404.

-45-



[40) J. Leray: Etude de diverses equations integrales non lineaires et de quelques

problemes que pose lhydrodynamique. J. Math. Pures at Appliquees, 12 (1933), p. 1-

82.

[411 J. Leray and J. Schauder: Topologie et 4quations fonctionnelles. Ann. Sci. Ecole

Hum. Sup., 51 (1934), p. 45-78.

(421 P. L. Lions: Minimization problems in LI(a3). To appear in J. Func. Anal.

[43) P. L. Lions: Isolated singularities in semilinear problems. To appear in J. Diff.

Eq. .

[44] P. L. Lions: Two geometrical properties of solutions of semilinear problems. To

appear in Applicable Analysis.

[45] C. Loewner and L. Nirenberq: Partial differential equatins invariant under conformal

or projective transformations. In Contributions to Analysis, p. 245-272, Academic

Press, New Yrk (1974).

[46) McLeod and J. Serrin: to appear.

[471 F. Mignot and J. P. Puel: Sur une classe de problemes nonlineaires avec nonlinearite

positive, croissante, convexe. To appear in Comm. P.D.E. .

[48] Z. Nehari: On a nonlinear differential equation arising in nuclear physics. Proc.

Roy. Irish Acad., 62 (1963), p. 117-135.

(491 L. Nirenberq: Topics in nonlinear functional analysis. Lecture Notes, Courant

Institute of Mathematical Sciences, New York (1974).

[50] L. A. Peletier and J. Serrin: to appear.

[51] S. I. Pohozaev: Eigenfunctions of the equation du + )f(u) = 0. Soy. Math. Doklady,

5 (1965), p. 1408-1411.

[523 P. H. Rabinowitz: Variational methods for nonlinear eigenvalue problems. In

Eigenvalues of Non-linear problems. C.I.M.E., Ediz. Cremonese, Rome (1974).

(531 P. H. Rabinowitz: Variational methods for nonlinear elliptic eigenvalue problems.

Indiana Univ. Math. J., 23 (1974), p. 729-754.

[541 G. H. Ryder: Boundary value problems for a class of nonlinear differential

equations. Pacific J. Math., 28 (1967), p. 477-503.

-46-



(55] W. Strauss: Existence of solitary waves in higher dimensions. Comm. Math. Phys.,5

(1977), p. 149-162.

(56) L. Veron: Singular solutions of some nonlinear elliptic equations. To appear in J.

Nonlinear Analysis T.M.A.

PL.L/ jvs

-47-



SECUNtII Y CI.AS-"I( AI 10,, OF , I P AGI *C ! , n, , ft l

REPORT DOCUMENTATION PAGE ,',1 0.!\,1
1. WU U P U ,LR V1. OV ACCES',E .) NO. 3. NICIPt NTT CA. ALOG NtI-L

# 2209

A. "IITL F (nnd S,,brlrte) S. TYPC OF RE PORT 6 PERIOD COCv i'.F O

Summary Report n ro s~tC'L in
On the Existence of Positive Solutions of Semi- reportinn periodi
linear Elliptic Equations 6. PLRFORMING OHS. ,,LPOkI NIMO L

7. AUTHO R(') S. CONTRACT OR GxANI NotPt+ -

P. L. Lions DAAG29-80-C-0041

9 PkRcRMING rFIGANIZAI II N NAME AND AOD6M[o( tO. PROGRAM FLF-.ENT. "RDJF

Mathcematics Resezrch Center, University Of AREA& AGRK UNIT NUUBi;S

610 Wlnut Street \Visconsin Work Unit Number 1

Madison. Wisconsin 13706 Applied Analysis
II. CONTROLLING OFFICE NAME AND ADDRESS 32. REPORT DATE

U. S. Army Research Office April 1981
P.O. 0.oX I Z I. 13. NUMBER OF PAGES

Research Trinnqle Park. North Carolina 27709 47
14. MOIITORINO .C.ENCY NAME & AGDRESS(if ditfeen.i from Controlling OfIfce) 15. SECURITY CLASS. (of tbt. repefl)

UNCLASSIFIED
15a. DECLASSIF1CATIOt, O A ;5 A ..

SCHEDULE

'6, DIS1RIBUTION STA-TE.MENT (of this Repott)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract etrtered in Block 20, It different from Report)

8. SL-PPLF-MENTAARY NOTES

19. KFY VAOROS (C nfinue of revorse side it neceae.a " anO idenif y by block r.<:tber)

Semilinear equations, positive solutions, topological degree, bifurcation

20) ALST PACT (ContInoe o, rover.- side If necoearv and fdertify 6Y block n r

In this paper we study the existence of positive solutions of c--imci>
elliptic equations. Various possible behaviors of the nonlinearity are con-
sidered and in each case nearly optimal multiplicity results are obtai!.cd.
The results are also interpreted in terms of bifurcation diaorams.

D D , "AN" , 147 0 T1 r io F. o r N V C S S O Lt L 1 L U N C I, ,) S I , jl ]

SUCURIY CL 'IFC1l' No 0 ri FPA' (16,- 11t, t 1 -



DATE

ILME


